Towards a Database of Belyī Maps

Myles Ashitey (Pomona College), Brian Bishop (Pomona College), Kendall Bowens (Tuskegee University)

Abstract
A Bely̆̆ map $\beta: \mathbb{P}^{1}(\mathbb{C}) \rightarrow: / /$ www.overleaf.com/1488592572mbcfpctpu is a rational function with at most three critical values; we may assume these are $\{0,1, \infty\}$. A Dessin d'Enfant is a planar bipartite graph on the sphere obtained by considering the preimage of a path between two of these critical values, usually taken to be the line segment from 0 to 1 . Such graphs can be drawn on the sphere by composing with stereographic projection: $\beta^{-1}([0,1]) \subseteq \mathbb{P}^{1}(\mathbb{C}) \simeq S^{2}(\mathbb{R})$. This project sought to either create or expand on a database of such Belyĭ pairs, their corresponding Dessins d'Enfant, and their monodromy groups. We did so for up to degree $N=5$ in the hopes of generating an algorithm to generate Dessins from monodromy triples.

Process

. first step towards creating a database was to create our own Dessin from the Monodromy Triples and Degree Sequences provided to us. The next step was to record what we discovered electronically throug
LaTeX and TikZ. - ,

Then, senerated our Dessins on the complex plane
of our database for $\mathrm{g}=0$ up to $\mathrm{N}=5$ we were able to put the elements

Background

Critical Values: Consider a function $\beta: S \rightarrow \mathbb{P}^{1}(\mathbb{C})$ for the Riemann Sphere $S=\mathbb{P}^{1}(\mathbb{C})$. A critical point $P \in S$ satisfies $\beta^{\prime}(P)=0$. A critical value $w \in \mathbb{P}^{1}(\mathbb{C})$ is $x=\beta(P)$ the value of a critical point $P \in S$.
Belyı̆ Maps: Gennadiĭ Bely̆̈ [2] that a compact connected Riemann surface S of genus g is completely determined by the existence of a Belyĭ map $\beta: S \rightarrow \mathbb{P}^{1}(\mathbb{C})$ is a rational map with critical values $\{0,1, \infty\}$.
Dessin d'Enfant: Following an idea from Alexander Grothendieck [3] we define a Dessin d'Enfant (French for "child's drawing") as a bipartite graph with "black" vertices $B=\beta^{-1}(0)$, "white" vertices $W=\beta^{-1}(1)$, midpoints of faces $F=\beta^{-1}(\infty)$, and edges $E=\beta^{-1}([0,1])$. For our purposes, these Dessins d'Enfant are projected onto the sphere using stereographic projection
Degree Sequences: For any $P \in B \cup W \cup F$, we will denote the ramification index e_{P} as the number of edges at vertex P. The collection of the ramification indices can be collected into a multiset of multisets called the degree sequence \mathcal{D}

Stereographic Projection
$\mathbb{P}^{1}(\mathbb{C})=\mathbb{C} \cup\{\infty\} \rightarrow \quad S^{2}(\mathbb{R})=\left\{(u, v, w) \in \mathbb{A}^{3}(\mathbb{R}) \mid u^{2}+v^{2}+w^{2}=1\right\}$ $z=\frac{u+i v}{1-w} \quad \mapsto(u, v, w)=\left(\frac{2 \operatorname{Re}(z)}{|z|^{2}+1}, \frac{2 \operatorname{Im}(z)}{|z|^{2}+1}, \frac{|z|^{2}-1}{|z|^{2}+1}\right)$

Belyı̆ Maps \rightarrow Permutation Triples
We can compute the Permutation Triples ($\sigma_{0}, \sigma_{1}, \sigma_{\infty}$) from a given Belyi map $\beta: S \rightarrow \mathbb{P}^{1}(\mathbb{C})$ with the following steps:

1. Choose $x_{0} \neq 0,1$,
\#2. Choose loops γ around $\epsilon=0,1$ in $\mathbb{P}^{1}(\mathbb{C})$ that start and end at x_{0}. For example, we often choose $\gamma(t)=\epsilon+\left(x_{0}-\epsilon\right) e^{2 \pi i t}$
\#3. For each P_{k}, compute those paths $\widetilde{\gamma}_{\epsilon}^{(k)}$ on the Riemann Surface S such that $\beta \circ \tilde{\gamma}_{\epsilon}^{(k)}=\gamma_{\epsilon}$ and $\widetilde{\gamma}_{\epsilon}^{(k)}(0)=P_{k}$
\#4. Compute permutations $\sigma_{0}, \sigma_{1}, \sigma_{\infty} \in S_{N}$ satisfying $\widetilde{\gamma}_{\epsilon}^{(k)}(1)=P_{\sigma_{\epsilon}(k)}$ and $\sigma_{0} \circ \sigma_{1} \circ \sigma_{\infty}=1$

Permutation Triples \rightarrow Degree Sequences
Adolf Hurwitz [4] showed the following properties for a Belyĭ map $\beta: S \rightarrow$ $\mathbb{P}^{1}(\mathbb{C})$ of degree N on a Riemann Surface S of genus g :
i. The composition $\sigma_{0} \circ \sigma_{1} \circ \sigma_{\infty}=1$ is the trivial permutation, and the subgroup $\operatorname{Mon}(\beta)=\left\langle\sigma_{0}, \sigma_{1}, \sigma_{\infty}\right\rangle$ of the symmetric group S_{N} generated by them is a transitive subgroup. This is called the monodromy group of
ii. Each of these permutations is a product of disioint cycles

$$
\begin{aligned}
& \sigma_{0}=\prod_{P \in B}\left(b_{P, 1} b_{P, 2} \cdots b_{P, e_{P}}\right) \quad B=\beta^{-1}(0) \\
& \sigma_{1}=\prod_{P \in V}\left(w_{P, 1} w_{P, 2} \cdots w_{P, e_{P}}\right) \quad \text { where } \quad W=\beta^{-1}(1) \\
& \sigma_{\infty}=\prod_{P \in F}\left(f_{P, 1} f_{P, 2} \cdots f_{P, e_{P}}\right) \quad F=\beta^{-1}(\infty)
\end{aligned}
$$

iii. The multiset $\mathcal{D}=\left\{\left\{e_{P} \mid P \in B\right\}\right.$, $\left.\left\{e_{P} \mid P \in W\right\},\left\{e_{P} \mid P \in F\right\}\right\}$ is a collection of positive integers such that

$$
N=\sum_{P \in B} e_{P}=\sum_{P \in W} e_{P}=\sum_{P \in F} e_{P}=|B|+|W|+|F|+(2 g-2) .
$$

v. Conversely, any multiset \mathcal{D} which a collection of three multisets is the degree sequence for some Bely̌̌ map $\beta: S \rightarrow \mathbb{P}^{1}(\mathbb{C})$ if and only if the exist perm
above hold.
There is a one-to-one correspondence between Bely Maps. Dessins d'Enfant There is a one-to-one correspondence bewwen Belyi Maps, Dessins d Enfant Degree Sequence!

Elements of the Database

Studied by PRiME 201
 Previously known

Unkown

Permutation Triples \rightarrow Dessins
For each disjoint cycle in σ_{0} assign a black vertex with $\left|\sigma_{0}\right|$ edges coming out of it
Using the associated disjoint cycle, label the edges counterclockwise
For each disjoint cycle in σ_{1} assign a white vertex with $\left|\sigma_{1}\right|$ edges
Using the associated disjoint cycle, label the e egges counterclockwise
Connect two vertices if they have an edge in common

Example

Figure 2: Dessin of Degree $N=3 \&$ Degree Sequence $\mathcal{D}=\{\{3\},\{1,1,1\},\{3\}\}$ Permutation Triples: $\sigma_{0}=(132), \sigma_{1}=(1)(2)(3), \sigma_{\infty}=(123)$ Corresponding to $\beta=z^{7}$

Database					
Degree N	Coms 9	Degrese Sequenes D	Mondoromy Tiple	Bely Nap	Desind deriaut
$N=5$	$g=0$	$D=\{4,1,\{3,2\},\{3,14\}$	$\begin{aligned} & \left.\begin{array}{c} o_{0}=(1245)(3) \\ \sigma_{1}=(13)(254) \\ \sigma_{\infty}=(123)(4)(5) \end{array}\right) \end{aligned}$	$\beta_{(2)}=\# 13$, -
$N=5$	${ }^{\prime}=0$	$D=\{44,1,\{3,2\},\{3,1,1\}\}$	$\begin{aligned} \sigma_{0} & =\left(\begin{array}{llll} 1 & 4 & 3 & 5 \end{array}\right)(2) \\ \sigma_{1} & =\left(\begin{array}{ll} 1 & 4 \end{array}\right)\left(\begin{array}{lll} 2 & 5 & 3 \end{array}\right) \\ \sigma_{\infty} & =\left(\begin{array}{llll} 1 & 2 & 3 \end{array}\right)(4)(5) \end{aligned}$	$\beta^{(x)}=\# 14$	$0_{3}{ }^{0}$

Future Work
. Find more Bely̆ maps!

- Update Algorithm to generate Dessin from Permutation Triples
- Compute on higher genera, degree, and other Riemann surfaces
- Create more movies to explain the other aspects of our Databas

References
[1] N. M. Adrianov, N. Ya Amburg, V. A. Dremov, Yu A. Levitskaya, 1] N. M. Adrianov, N. Ya Amburg, V. A. Dremov, Yu A. Levitskaya,
E. M. Kreines, Yu. Yu. Kochetkov, V. F. Nasretdinova, and G. B. Shabat. "Catalog of dessins d'enfants with ≤ 4 edges."
https://arxiv.org/abs/0710.2658v1
${ }^{21}$ G. G. Belyi. "On extensions of the maximal cyclotomic field having a given classical Galois group." J. Reine Angew. Math., 341 (1983), 147-156
3] A. Grothendieck. "Esquisse d'un programme." Rapport Scientifique, H.

4] Adolph Hurwitz. "Ueber Riemann'sche Flächen mit gevebenen Verzwei gungspunkten." Mathematische Annalen, 39(1):1-60, 1891.
[5] Michael Klug, Michael Musty, Sam Schiavone, and John Voight. "Numer cal calculation of threepoint branched covers of the projective line https://arxiv.org/abs/1311.2081v3
6] Michael Musty, Sam Schiavone, Jeroen Siisling, and John Voight Database of Belyí Maps." https://arxiv.org/abs/1805.07751v2 7] Leonardo Zapponi. "What is ... a Dessin d'Enfant?" Notices Amer Weth Soc. (2003) 788-79

Acknowledgements

- Dr. Edray Herber Goins (Pomona College)
- Dr. Alex Barrios (Carleton College)
- Alia Curtis
- Dr. Tim McEldowney

Department of Mathematics, Pomona College National Science Foundation (DMS-1560394)

